82cook.com을 즐겨찾기에 추가
login form

자유게시판

드러낼 수 없는 고민을 풀어보는 속풀이방

2의 750승을 9로 나누었을때 나머지는..(수학개념)

..... 조회수 : 1,208
작성일 : 2023-12-18 22:04:08

답은 2 입니다.

이런 문제는 수학의 어떤 개념을 물어보는 걸까요?

저는 타과 고등부강사인데

고등부 문제들은 특히

출제자가 의도하는 게 뭘까

이 문제를 통해서 진짜 알고 싶은 게 뭘까

이런걸 생각하다보면 정말 개념정리? 가 잘 되거든요.

단순히 이 문제는 이렇게 풀어

이런식으로는 고등공부가 너무 고통스럽구요.

그냥 수상 기본 문제 보다가 궁금해서 여쭤봅니다.

수학쌤들 도움 좀 부탁드려요^^ 

IP : 14.50.xxx.31
11 개의 댓글이 있습니다.
  • 1. ....
    '23.12.18 10:05 PM (14.50.xxx.31)

    앗 문제가 잘못ㅠ
    2의 751승입니다

  • 2. 이건
    '23.12.18 10:08 PM (114.206.xxx.112) - 삭제된댓글

    약수와 배수죠
    2486 2486…

  • 3. ....
    '23.12.18 10:13 PM (14.50.xxx.31)

    저도 그렇게 생각했는데
    이런 문제가 중등 혹은 초등 최상위에도 많이 나오는 문제잖아요.
    근데 왜 수상 문제에 나올까 궁금했어요..

  • 4. ㅇㅇ
    '23.12.18 10:14 PM (114.206.xxx.112)

    수상은 중등의 연장이예요

  • 5. dd
    '23.12.18 10:26 PM (116.41.xxx.202)

    2^3=9-1
    2^751=(2^3)^250*2=(9-1)^250*2
    (9-1)^250=9^250-250*9^249+ ~-250*9+1
    그래서 (9-1)^250*2=9*A+2 형태라서 나머지는 2입니다.

  • 6. 돌베개
    '23.12.19 2:36 AM (118.218.xxx.143) - 삭제된댓글

    8-(-1)=9

  • 7. ...
    '23.12.19 3:20 AM (118.218.xxx.143) - 삭제된댓글

    고등수준의 더 복잡한 식에서 더 복잡하게 표현된 수를 잘 다룰 수 있냐를 판단하는 겁니다.
    자연수 정수 무리수 같은 실수문제도 초중등한테 어려운 문제는 수상에서 다루도록 한 건데
    초중등에서도 나름의 방법으로 풀 수 있는 건 초중등 고난이도 문제로도 나오는거죠.

    방법1. 위에 dd님이 푼 방식은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    dd님의 두 번 째 식까지 썼고, (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로
    (a+b)^250 전개식은 a가 내림차순으로 251개 항이고, 마지막항은 b^250제곱이란거 유추할 수 있죠.
    9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250 은 1 이므로
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    dd님 두 번 째 식 중 2^750=8^250.
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    따라서 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 8. 고등수학
    '23.12.19 3:23 AM (118.218.xxx.143)

    고등수준의 더 복잡한 식에서
    더 복잡하게 표현된 수를 잘 다룰 수 있냐를 판단하는 겁니다.
    중학교까지 배운 자연수 정수 무리수 같은 실수문제라도
    초중등한테 어려운 문제는 수상에서 다루도록 한 건데
    초중등에서도 나름의 방법으로 풀 수 있는 건 초중등 고난이도 문제로도 나올 수 있고 그런거죠

  • 9. 고등수학
    '23.12.19 3:29 AM (118.218.xxx.143) - 삭제된댓글

    방법1. 위에 dd님이 푼 방식은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1대입 전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    dd님 두 번 째 식 중 2^750=8^250.
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    따라서 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 10. 고등수학
    '23.12.19 3:33 AM (118.218.xxx.143) - 삭제된댓글

    방법1. 위에 dd님은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1 대입&전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    2^750=8^250
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    x^751=2f(x)이므로 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 11. 고등수학
    '23.12.19 3:37 AM (118.218.xxx.143)

    방법1. 위에 dd님은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1 대입&전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 2를 곱해서 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    2^750=8^250
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    문제는 2^751이므로 답은 2배해서 2.

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

☞ 로그인 후 의견을 남기실 수 있습니다
댓글입력 작성자 :

N

번호 제목 작성자 날짜 조회
1532421 비타민씨가 소화를 돕나요 방해하나요 3 소화 2023/12/20 1,330
1532420 에르메스 커피잔을 당근에서 샀는데.. 11 궁금 2023/12/20 4,072
1532419 갑자기 이재명을 예찬하는 보수들 22 ft.변희재.. 2023/12/20 2,166
1532418 언론과 검찰 6 세상 2023/12/20 517
1532417 한뚜껑 대답이 진짜 어이없네요.ㅎㅎ 29 어서와~ 2023/12/20 4,560
1532416 압력밥솥 그대로 밥 보관 8 2023/12/20 1,867
1532415 삼만원 종무식선물 모가좋을까요? 5 마니또 2023/12/20 1,355
1532414 모공이 뻥뻥 하다못해ㅜ.ㅜ 7 00 2023/12/20 3,275
1532413 한동훈 싫은데 이재명도 싫음 67 ... 2023/12/20 3,481
1532412 카톡에 자랑질 할까 했는데 12 ㅡㅡ 2023/12/20 3,952
1532411 애정결핍이 50이 되도 고쳐지는게 아니네요. 27 ㄷㅂ 2023/12/20 5,218
1532410 조민씨 화장품 54 ㄴㅅㅈ 2023/12/20 11,712
1532409 계단식 아파트에 살면 계량기나 세탁기 얼까요? 8 ... 2023/12/20 1,787
1532408 급질 위내시경 수면vs비수면 6 궁금이 2023/12/20 1,260
1532407 턱라인 살 늘어지는거 무슨 시술받으면 될까요? 7 ..... 2023/12/20 3,588
1532406 "출발하는데 탑승객이 없네"…속도 조절 들어간.. 51 ㅁㄴㅇㄹ 2023/12/20 21,213
1532405 주위에 문학도들이 하나 둘씩 세상을 떠나네요 휴~ 6 2023/12/20 4,106
1532404 중등아이가 손떠는데요 21 손떨림 2023/12/20 4,918
1532403 한번 들으면 기절할 것 같은 사자후 3 웃어요 2023/12/20 2,689
1532402 감사합니다 2 영화 2023/12/20 890
1532401 경기도 눈 쌓였나요? 3 .. 2023/12/20 2,994
1532400 난방텐트 말고 얼굴텐트 11 눈이오네 2023/12/20 4,525
1532399 인간관계에 연연하지 않기 3 00 2023/12/20 4,365
1532398 근종있으면 항문통이 오기도 하나요? 7 .., 2023/12/20 3,027
1532397 장어는 어디에 구웠을때 가장 맛있나요 11 .. 2023/12/20 1,859