82cook.com을 즐겨찾기에 추가
login form

자유게시판

드러낼 수 없는 고민을 풀어보는 속풀이방

2의 750승을 9로 나누었을때 나머지는..(수학개념)

..... 조회수 : 1,207
작성일 : 2023-12-18 22:04:08

답은 2 입니다.

이런 문제는 수학의 어떤 개념을 물어보는 걸까요?

저는 타과 고등부강사인데

고등부 문제들은 특히

출제자가 의도하는 게 뭘까

이 문제를 통해서 진짜 알고 싶은 게 뭘까

이런걸 생각하다보면 정말 개념정리? 가 잘 되거든요.

단순히 이 문제는 이렇게 풀어

이런식으로는 고등공부가 너무 고통스럽구요.

그냥 수상 기본 문제 보다가 궁금해서 여쭤봅니다.

수학쌤들 도움 좀 부탁드려요^^ 

IP : 14.50.xxx.31
11 개의 댓글이 있습니다.
  • 1. ....
    '23.12.18 10:05 PM (14.50.xxx.31)

    앗 문제가 잘못ㅠ
    2의 751승입니다

  • 2. 이건
    '23.12.18 10:08 PM (114.206.xxx.112) - 삭제된댓글

    약수와 배수죠
    2486 2486…

  • 3. ....
    '23.12.18 10:13 PM (14.50.xxx.31)

    저도 그렇게 생각했는데
    이런 문제가 중등 혹은 초등 최상위에도 많이 나오는 문제잖아요.
    근데 왜 수상 문제에 나올까 궁금했어요..

  • 4. ㅇㅇ
    '23.12.18 10:14 PM (114.206.xxx.112)

    수상은 중등의 연장이예요

  • 5. dd
    '23.12.18 10:26 PM (116.41.xxx.202)

    2^3=9-1
    2^751=(2^3)^250*2=(9-1)^250*2
    (9-1)^250=9^250-250*9^249+ ~-250*9+1
    그래서 (9-1)^250*2=9*A+2 형태라서 나머지는 2입니다.

  • 6. 돌베개
    '23.12.19 2:36 AM (118.218.xxx.143) - 삭제된댓글

    8-(-1)=9

  • 7. ...
    '23.12.19 3:20 AM (118.218.xxx.143) - 삭제된댓글

    고등수준의 더 복잡한 식에서 더 복잡하게 표현된 수를 잘 다룰 수 있냐를 판단하는 겁니다.
    자연수 정수 무리수 같은 실수문제도 초중등한테 어려운 문제는 수상에서 다루도록 한 건데
    초중등에서도 나름의 방법으로 풀 수 있는 건 초중등 고난이도 문제로도 나오는거죠.

    방법1. 위에 dd님이 푼 방식은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    dd님의 두 번 째 식까지 썼고, (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로
    (a+b)^250 전개식은 a가 내림차순으로 251개 항이고, 마지막항은 b^250제곱이란거 유추할 수 있죠.
    9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250 은 1 이므로
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    dd님 두 번 째 식 중 2^750=8^250.
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    따라서 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 8. 고등수학
    '23.12.19 3:23 AM (118.218.xxx.143)

    고등수준의 더 복잡한 식에서
    더 복잡하게 표현된 수를 잘 다룰 수 있냐를 판단하는 겁니다.
    중학교까지 배운 자연수 정수 무리수 같은 실수문제라도
    초중등한테 어려운 문제는 수상에서 다루도록 한 건데
    초중등에서도 나름의 방법으로 풀 수 있는 건 초중등 고난이도 문제로도 나올 수 있고 그런거죠

  • 9. 고등수학
    '23.12.19 3:29 AM (118.218.xxx.143) - 삭제된댓글

    방법1. 위에 dd님이 푼 방식은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1대입 전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    dd님 두 번 째 식 중 2^750=8^250.
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    따라서 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 10. 고등수학
    '23.12.19 3:33 AM (118.218.xxx.143) - 삭제된댓글

    방법1. 위에 dd님은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1 대입&전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    2^750=8^250
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    x^751=2f(x)이므로 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 11. 고등수학
    '23.12.19 3:37 AM (118.218.xxx.143)

    방법1. 위에 dd님은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1 대입&전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 2를 곱해서 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    2^750=8^250
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    문제는 2^751이므로 답은 2배해서 2.

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

☞ 로그인 후 의견을 남기실 수 있습니다
댓글입력 작성자 :

N

번호 제목 작성자 날짜 조회
1532163 면세점에서 화장품 구입시 2 .. 2023/12/19 1,150
1532162 어그 모카신에 츄리닝 2 어울릴까요?.. 2023/12/19 1,594
1532161 한동훈 이준석 국짐 관련 찌라시 모음 7 ㅋㅋㅋ 2023/12/19 2,447
1532160 자궁선근증 7 지구 2023/12/19 1,569
1532159 우울했는데 이거 보고 치료됐어요 ㅋㅋㅋㅋ 49 ㅋㅋ 2023/12/19 23,491
1532158 고터 꽃시장 좋은가게 추천좀 해주세요 5 .. 2023/12/19 1,267
1532157 요즘 종합병원 무릎수술후 보호자간병할수 있나요? 6 간병 2023/12/19 1,193
1532156 살기도 싫은데 그렇다고 죽을수도 죽을 용기도 없는 16 트위스트 2023/12/19 3,249
1532155 방금 지하철에서 꼬마가 아기한테 43 ㅎㅎ 2023/12/19 19,225
1532154 차없이 초등 둘 데리고, KTX타고 강릉여행 할수 있겠죠? 13 가쟈 2023/12/19 2,331
1532153 여기서 연예인 외모 찬양하고 자괴감 갖는 분들 3 2023/12/19 1,176
1532152 풀무원*페이코)신규 42% 할인+1만쿠폰. 기존고객은 28%+5.. 3 ... 2023/12/19 1,377
1532151 피싱당해서 주민번호 앞자리 알려줬는데.. 4 바보 2023/12/19 2,281
1532150 정수기 종류별로 볼만한곳 없을까요 2 정수기 2023/12/19 570
1532149 바지 안감에 달라붙지 않는 내의 7 ... 2023/12/19 1,374
1532148 단열이 정말 중요하네요 5 정말 2023/12/19 3,166
1532147 하루종일 꺼놨다가 퇴근후 23도/ 하루종일 21도로 켜놓기( 어.. 6 지역난방 2023/12/19 2,352
1532146 앵클부츠 디자인 어때요? 11 ... 2023/12/19 1,779
1532145 눈올때 신발 뭐 신으시나요? 1 눈의여왕 2023/12/19 1,061
1532144 고등 아이가 머리가 계속 아프고 어제는 숨쉬기가 힘들다고 하던데.. 9 고등엄마 2023/12/19 1,964
1532143 대변에 피가나오면 무슨과 병원을 가야하나요? 11 커피 2023/12/19 2,647
1532142 왼쪽 뇌에 문제가 있으면 5 ... 2023/12/19 1,535
1532141 44살이 34살처럼 보이는거 가능? 17 ... 2023/12/19 4,413
1532140 아파트 사시는 분들 이불 어떻게 터세요? 29 ... 2023/12/19 5,063
1532139 태세계3 재밌어요 3 웨하스 2023/12/19 1,782