82cook.com을 즐겨찾기에 추가
login form

자유게시판

드러낼 수 없는 고민을 풀어보는 속풀이방

2의 750승을 9로 나누었을때 나머지는..(수학개념)

..... 조회수 : 1,070
작성일 : 2023-12-18 22:04:08

답은 2 입니다.

이런 문제는 수학의 어떤 개념을 물어보는 걸까요?

저는 타과 고등부강사인데

고등부 문제들은 특히

출제자가 의도하는 게 뭘까

이 문제를 통해서 진짜 알고 싶은 게 뭘까

이런걸 생각하다보면 정말 개념정리? 가 잘 되거든요.

단순히 이 문제는 이렇게 풀어

이런식으로는 고등공부가 너무 고통스럽구요.

그냥 수상 기본 문제 보다가 궁금해서 여쭤봅니다.

수학쌤들 도움 좀 부탁드려요^^ 

IP : 14.50.xxx.31
11 개의 댓글이 있습니다.
  • 1. ....
    '23.12.18 10:05 PM (14.50.xxx.31)

    앗 문제가 잘못ㅠ
    2의 751승입니다

  • 2. 이건
    '23.12.18 10:08 PM (114.206.xxx.112) - 삭제된댓글

    약수와 배수죠
    2486 2486…

  • 3. ....
    '23.12.18 10:13 PM (14.50.xxx.31)

    저도 그렇게 생각했는데
    이런 문제가 중등 혹은 초등 최상위에도 많이 나오는 문제잖아요.
    근데 왜 수상 문제에 나올까 궁금했어요..

  • 4. ㅇㅇ
    '23.12.18 10:14 PM (114.206.xxx.112)

    수상은 중등의 연장이예요

  • 5. dd
    '23.12.18 10:26 PM (116.41.xxx.202)

    2^3=9-1
    2^751=(2^3)^250*2=(9-1)^250*2
    (9-1)^250=9^250-250*9^249+ ~-250*9+1
    그래서 (9-1)^250*2=9*A+2 형태라서 나머지는 2입니다.

  • 6. 돌베개
    '23.12.19 2:36 AM (118.218.xxx.143) - 삭제된댓글

    8-(-1)=9

  • 7. ...
    '23.12.19 3:20 AM (118.218.xxx.143) - 삭제된댓글

    고등수준의 더 복잡한 식에서 더 복잡하게 표현된 수를 잘 다룰 수 있냐를 판단하는 겁니다.
    자연수 정수 무리수 같은 실수문제도 초중등한테 어려운 문제는 수상에서 다루도록 한 건데
    초중등에서도 나름의 방법으로 풀 수 있는 건 초중등 고난이도 문제로도 나오는거죠.

    방법1. 위에 dd님이 푼 방식은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    dd님의 두 번 째 식까지 썼고, (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로
    (a+b)^250 전개식은 a가 내림차순으로 251개 항이고, 마지막항은 b^250제곱이란거 유추할 수 있죠.
    9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250 은 1 이므로
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    dd님 두 번 째 식 중 2^750=8^250.
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    따라서 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 8. 고등수학
    '23.12.19 3:23 AM (118.218.xxx.143)

    고등수준의 더 복잡한 식에서
    더 복잡하게 표현된 수를 잘 다룰 수 있냐를 판단하는 겁니다.
    중학교까지 배운 자연수 정수 무리수 같은 실수문제라도
    초중등한테 어려운 문제는 수상에서 다루도록 한 건데
    초중등에서도 나름의 방법으로 풀 수 있는 건 초중등 고난이도 문제로도 나올 수 있고 그런거죠

  • 9. 고등수학
    '23.12.19 3:29 AM (118.218.xxx.143) - 삭제된댓글

    방법1. 위에 dd님이 푼 방식은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1대입 전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    dd님 두 번 째 식 중 2^750=8^250.
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    따라서 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 10. 고등수학
    '23.12.19 3:33 AM (118.218.xxx.143) - 삭제된댓글

    방법1. 위에 dd님은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1 대입&전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    2^750=8^250
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    x^751=2f(x)이므로 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 11. 고등수학
    '23.12.19 3:37 AM (118.218.xxx.143)

    방법1. 위에 dd님은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1 대입&전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 2를 곱해서 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    2^750=8^250
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    문제는 2^751이므로 답은 2배해서 2.

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

☞ 로그인 후 의견을 남기실 수 있습니다
댓글입력 작성자 :

N

번호 제목 작성자 날짜 조회
1537988 파드커피 맛있는 거 추천해주세요 1 커피 2023/12/21 493
1537987 임플란트 하려는데 치과가 양아치 같아요 4 ㅡ.ㅡ 2023/12/21 2,499
1537986 뉴스타파 김건희 녹취록 추가 공개 '선수'와 직접소통 ..또 너.. 7 김거희 또 .. 2023/12/21 2,747
1537985 접이식 욕조를 사려는데요 3 .. 2023/12/21 1,360
1537984 퇴근 직후의 식욕... 2 ㅜㅜ 2023/12/21 2,374
1537983 동네떡집ᆢ 1 떡순이 2023/12/21 1,873
1537982 유튭 2024갱신 11500원 그대로에요?? 4 .. 2023/12/21 873
1537981 50대 연금저축,irp,isa 꼭 해야할까요? 12 노후걱정 2023/12/21 4,861
1537980 과자 사두세요? 13 ,,, 2023/12/21 5,563
1537979 요즘 아이돌들 보면 불쌍해요. 24 ₩₩ 2023/12/21 7,046
1537978 이것도 폐경증상중 하나인가요 4 궁금 2023/12/21 3,334
1537977 이런 말투 기분 나쁜거 맞나요? 6 2023/12/21 2,515
1537976 제가 지금 연모1회를 보고있는데 4 연모 2023/12/21 1,340
1537975 실손부담보 잡힌거 해제될때 손해사정인 나오나요? 2 .. 2023/12/21 525
1537974 이태원참사 특별법 상정불발 31 2023/12/21 2,714
1537973 롱패딩 대유행 34 으아 2023/12/21 20,266
1537972 나이들어 미혼이면 짠순이가 되어야겠어요 12 ㅇㅇ 2023/12/21 5,057
1537971 카톡으로 선물받은 교촌치킨 주문.... 5 카톡 선물 2023/12/21 1,763
1537970 오늘 고양이 나오는 영상을 봤는데 7 ..... 2023/12/21 1,222
1537969 (기간제교사) 방학 중 자원봉사 해볼까요? 1 당뇨전단계 2023/12/21 1,290
1537968 설화수 쿠션 좋네요 10 현소 2023/12/21 4,683
1537967 주는 것을 좋아하는데요 이게 참 어려운 일인 거 같아요 28 마음의선물 2023/12/21 4,778
1537966 재판 공탁금 받으면, 상대한테 통지가 가나요? 공탁금 2023/12/21 340
1537965 대화를 하는데 다른 화제로 끼어드는 사람 9 .. 2023/12/21 2,238
1537964 딸내미가 가려움증이 심한데 항생제처방 17 ㅇㅇㅇ 2023/12/21 2,091