82cook.com을 즐겨찾기에 추가
login form

자유게시판

드러낼 수 없는 고민을 풀어보는 속풀이방

2의 750승을 9로 나누었을때 나머지는..(수학개념)

..... 조회수 : 1,067
작성일 : 2023-12-18 22:04:08

답은 2 입니다.

이런 문제는 수학의 어떤 개념을 물어보는 걸까요?

저는 타과 고등부강사인데

고등부 문제들은 특히

출제자가 의도하는 게 뭘까

이 문제를 통해서 진짜 알고 싶은 게 뭘까

이런걸 생각하다보면 정말 개념정리? 가 잘 되거든요.

단순히 이 문제는 이렇게 풀어

이런식으로는 고등공부가 너무 고통스럽구요.

그냥 수상 기본 문제 보다가 궁금해서 여쭤봅니다.

수학쌤들 도움 좀 부탁드려요^^ 

IP : 14.50.xxx.31
11 개의 댓글이 있습니다.
  • 1. ....
    '23.12.18 10:05 PM (14.50.xxx.31)

    앗 문제가 잘못ㅠ
    2의 751승입니다

  • 2. 이건
    '23.12.18 10:08 PM (114.206.xxx.112) - 삭제된댓글

    약수와 배수죠
    2486 2486…

  • 3. ....
    '23.12.18 10:13 PM (14.50.xxx.31)

    저도 그렇게 생각했는데
    이런 문제가 중등 혹은 초등 최상위에도 많이 나오는 문제잖아요.
    근데 왜 수상 문제에 나올까 궁금했어요..

  • 4. ㅇㅇ
    '23.12.18 10:14 PM (114.206.xxx.112)

    수상은 중등의 연장이예요

  • 5. dd
    '23.12.18 10:26 PM (116.41.xxx.202)

    2^3=9-1
    2^751=(2^3)^250*2=(9-1)^250*2
    (9-1)^250=9^250-250*9^249+ ~-250*9+1
    그래서 (9-1)^250*2=9*A+2 형태라서 나머지는 2입니다.

  • 6. 돌베개
    '23.12.19 2:36 AM (118.218.xxx.143) - 삭제된댓글

    8-(-1)=9

  • 7. ...
    '23.12.19 3:20 AM (118.218.xxx.143) - 삭제된댓글

    고등수준의 더 복잡한 식에서 더 복잡하게 표현된 수를 잘 다룰 수 있냐를 판단하는 겁니다.
    자연수 정수 무리수 같은 실수문제도 초중등한테 어려운 문제는 수상에서 다루도록 한 건데
    초중등에서도 나름의 방법으로 풀 수 있는 건 초중등 고난이도 문제로도 나오는거죠.

    방법1. 위에 dd님이 푼 방식은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    dd님의 두 번 째 식까지 썼고, (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로
    (a+b)^250 전개식은 a가 내림차순으로 251개 항이고, 마지막항은 b^250제곱이란거 유추할 수 있죠.
    9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250 은 1 이므로
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    dd님 두 번 째 식 중 2^750=8^250.
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    따라서 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 8. 고등수학
    '23.12.19 3:23 AM (118.218.xxx.143)

    고등수준의 더 복잡한 식에서
    더 복잡하게 표현된 수를 잘 다룰 수 있냐를 판단하는 겁니다.
    중학교까지 배운 자연수 정수 무리수 같은 실수문제라도
    초중등한테 어려운 문제는 수상에서 다루도록 한 건데
    초중등에서도 나름의 방법으로 풀 수 있는 건 초중등 고난이도 문제로도 나올 수 있고 그런거죠

  • 9. 고등수학
    '23.12.19 3:29 AM (118.218.xxx.143) - 삭제된댓글

    방법1. 위에 dd님이 푼 방식은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1대입 전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    dd님 두 번 째 식 중 2^750=8^250.
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    따라서 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 10. 고등수학
    '23.12.19 3:33 AM (118.218.xxx.143) - 삭제된댓글

    방법1. 위에 dd님은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1 대입&전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 1곱하기 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    2^750=8^250
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    x^751=2f(x)이므로 답은 1곱하기2

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

  • 11. 고등수학
    '23.12.19 3:37 AM (118.218.xxx.143)

    방법1. 위에 dd님은 확통에서 배우는 이항정리 이용

    방법2. 지수의 성질 & 전개식 유추
    (a+b)^2과 (a+b)^3 전개식 수상에서 배운걸로 유추해보면
    (a+b)^250 전개식은 a의 내림차순으로 251개 항이고, 그 중 마지막항은 b^250제곱.
    a=9, b=-1 대입&전개하면 9의 내림차순 250개는 모두 9의 배수이고, 마지막 항 (-1)^250은 1.
    답은 2를 곱해서 2.

    방법3. 나머지정리 이용 : f(x)를 (x-a)로 나눈 나머지는 f(a)이다.
    2^750=8^250
    8-(-1)=9 이므로 f(x)=x^250, x-(-1)로 나눈 나머지는 f(-1)=(-1)^250=1
    문제는 2^751이므로 답은 2배해서 2.

    방법4. 반복하는 숫자 패턴을 구하기.
    풀어보면 나머지가 2 4 8 7 5 1 여섯개가 계속 반복해서 나타나므로
    571 나누기 6하면 나머지가 1이라서 여섯개 숫자 중 첫번째인 2가 답

    궁금한데 초중등은 어떻게 푸나요? 네번째방법?

☞ 로그인 후 의견을 남기실 수 있습니다
댓글입력 작성자 :

N

번호 제목 작성자 날짜 조회
1538377 '가성비 갑' 프라이팬 찾았다..."가격·인지도와 무관.. 33 ㅗㅓ 2023/12/22 17,486
1538376 이화여대 기숙사 안되면 어떻게 하나요? 11 기숙사 2023/12/22 3,062
1538375 아낙연님 신당 차릴때 기사좀 내라 하세요 24 ㅇㅇ 2023/12/22 2,006
1538374 Ebs 연계 문제라는게 있나요? 5 ... 2023/12/22 706
1538373 이수지가 노래를 이렇게 잘하나요? 11 감동 2023/12/22 4,390
1538372 밥 전자렌지에 계속 돌려먹는데 괜찮을가요 8 .. 2023/12/22 3,718
1538371 동초나물 어떻게 무치면 맛있나요 2 ㄷㅅㅇ 2023/12/22 613
1538370 한샘에서 주방공사 해보신 분~ 5 .. 2023/12/22 1,512
1538369 23년 올 한해 잘 보내셨나요? 5 23년 마무.. 2023/12/22 1,267
1538368 돌아가신 어머니가 구매한 복권…1·2등 동시 당첨 3 ㅇㅇ 2023/12/22 5,892
1538367 노래방 서바이벌 오늘 결승전 2 Vs 2023/12/22 927
1538366 인천 그알에 나온 계모 학대살인 징역17년나왔네요 20 .. 2023/12/22 4,024
1538365 추합 간절해요 10 .... 2023/12/22 2,075
1538364 올해는 사직서 쓰며 마무리하네요 20 2023/12/22 5,653
1538363 건대. 홍대 생각보다 가기 매우 어렵네요. 57 입시 2023/12/22 17,544
1538362 풍년 압력솥 몇개씩 가지고 계세요? 30 풍년 압력솥.. 2023/12/22 3,895
1538361 마음의 체력 1 지나다 2023/12/22 1,257
1538360 저 쓸데없는 질문있는데요.. 6 로또.. 2023/12/22 1,683
1538359 소년시대 육룡이 나르샤 (약스포) 2 ㅇㅇ 2023/12/22 2,373
1538358 공무원 생활 염증 느껴요 16 ㅇㅇ 2023/12/22 8,511
1538357 팔자주름에 주름보톡스? 6 미미 2023/12/22 2,664
1538356 지하철 한증막이네요ㅡㅡ 6 ... 2023/12/22 3,513
1538355 애가 던진 농구공에 얼굴을 맞고나서 29 농구공 2023/12/22 5,724
1538354 펌)머리 진짜 잘하는 것 같은 미용사 7 ... 2023/12/22 3,990
1538353 10시 김어준의 다스뵈이다 연말특집 ㅡ 네덜란드대사초치의 비밀.. 3 같이봅시다 .. 2023/12/22 1,300