82cook.com을 즐겨찾기에 추가
login form

자유게시판

드러낼 수 없는 고민을 풀어보는 속풀이방

일반화의 오류에 대한 통계학적 고찰

일반화 조회수 : 785
작성일 : 2023-12-09 14:29:27

일반화의 오류에 대한 통계학적 고찰

--------------------------
성급한 일반화(性急한 一般化, 영어: hasty generalization) 또는 부당한 일반화의 오류(不當한 一般化의 誤謬)란 몇 개의 사례나 경험으로 전체 또는 전체의 속성을 단정짓고 판단하는 데서 발생하는 오류이다.

이 말이 처음으로 등장한 것은 미국 철학자, 국어학자 어빙 코피(Irving Copi, 1917~2002)의 1961년 책 논리학 입문(Introduction to Logic)에서이다.

 

예시) 서울의 모 대학에 가서 어떤 학생을 만났더니 그 학생이 영어를 너무 잘하는 것입니다. 또 다른 학생을 만났는데 그 학생도 영어를 너무 잘하는 것입니다.
그리고, 세번째 학생을 만났는데 이학생도 영어를 잘하는 것입니다.
나는 그 학교 학생 모두가(거의가) 영어를 잘 한다고 판단해 버리면서 그 대학 학생들은 모두가(거의가) 영어를 잘한다고 결론을 내립니다. 이게 바로 성급한 일반화의 오류입니다.
---------------------------

 

우리는 어떤 경우를 반복해서 보거나 겪은 후에 그것이 대부분 그럴것이다라고 생각한다.
그리고, 이러한 우리들의 추측은 바로 '성급한 일반화의 오류'라는 공격을 받기 십상이다.


이런 성급한 일반화의 오류(이하, 일반화의 오류)는 사회학이나, 아젠다, 프로파간다에서 
아주 중요한 이슈를 생산하는데, 이는 이를 이용하려는 부류나 이에 반대하는 부류의 논리적 논쟁에서 아주 유용하게 써먹을 수 있기 때문이다.

 

그런데, 어느 순간 나는 이 '일반화의 오류'가 정말 맞는 말인가 하는 의문이 들기 시작했다.

그래서, 많은 자료를 직접 찾아 보았는데,  이 '일반화의 오류'에 대해 재대로 통계학적, 확률적인 수학적 모델을 찾아보기 어려웠다. 결국 내가 직접 계산해 보기로 했다.

 

위에 예시로 든 경우와 비슷한 모델을 만들어서 보기로 하자.

어떤 바구니에 1000개의 빨간공과 파란공이 들어있는데,임의적으로 공 세개를 뽑는다고 가정한다.
섞여있는 비율은 순차적으로 
빨간공:파란공 - 1000:0, 900:100, 800:200, ........ , 200:800, 100:900, 0:1000 이다.

 

만약 내가 눈을 가리고 공 세개를 뽑는데, 그 세개의 공이 모두 빨간공일 확률은 어떻게 될까.
(이 계산은 고3수학때 지겹도록 풀어본 정석수학에 나와 있는 방법으로 계산한다.)

 

확률 = 사건이 일어날 경우의 수 / 전체 경우의 수
      빨간공의수 Combination 3 / 1000 C 3

 

이 계산을 하면 각 비율별로 다음과 같은 확률을 얻는다.
빨간공:파란공 확률
1000:0    100%
900:100   72.9%
800:200   51.2%
700:300   34.3%
600:400   21.6%
500:500   12.5%
400:600   6.4%
300:700   2.7%
200:800   0.8%
100:900   0.1%
0:1000    0%

 

위에 나타난 결과를 해석하면 이렇다.
만약 통에 전부 빨간공이면 나는 100%의 확률로 빨간공 세개를 뽑을 수 있다.
통에 900개가 빨간공, 100개가 파란공일 경우, 내가 빨간공 세개를 뽑을 확률은 72.9% 이다.
만약 빨간공 파란공이 반반 섞여 있다면, 내가 빨간공 세개를 뽑을 확률은 12.5%이다.
그리고, 빨간공이 100개, 파란공이 900개인 경우, 내가 빨간공 세개를 뽑을 확률은 0.1%이다.

 

그리고, 또한 반대방향의 확률적 계산도 가능한데,
만약 내가 임의적으로 세개의 공을 뽑았는데, 그 세개가 모두 빨간공일 경우, 
그 통안에 빨간공, 파란공의 분포별 확률은 어떻게 될까?

 

이 확률은 구하는 방법은 각 학자별로 조금 다를 수도 있겠지만,
나는 각각의 경우의 확률을 모두 합산하여 전체의 수를 구한후에, 그 값을 분모로 하는 확률을 구하여 누적하는 방법으로 구하였다.
(만약, 다른 통계적 기법이 있다면 소개해 주면, 다시 계산해 볼 수 있을 것 같다..)


그렇게 구한 값은 다음과 같다... 이는 1000행에 다다르니 주요한 몇 개의 값만 나열하겠다.

빨간공:파란공   개별확률    누적확률
1000:0            0.40%     0.40%
999:1             0.40%     0.80%
:
900:100          0.29%    34.7%
:
842:158          0.24%    49.99%
:
750:250          0.17%    68.55%
:
500:500          0.05%   93.81% 
:
250:750          0.01%   99.62%
:
100:900          0.00%   99.9%
:
3:997       0.0000000024%   100%

 

위의 데이타가 의미하는 바는 다음과 같다.
만약 내가 임의적으로 세개의 공을 뽑았는데, 그 세개가 모두 빨간공일 경우,

그 모집단의

90%이상이 빨간공일 확률은 34.7%, (100%-90%구간이 그럴 확률)
85%이상이 빨간공일 확률은 50%, (100%-85%구간이 그럴 확률) 
75%이상이 빨간공일 확률은 69%, (100%-75%구간이 그럴 확률) 
50%이상이 빨간공일 확률은 94%, (100%-50%구간이 그럴 확률) 
25%이상이 빨간공일 확률은 99.6% (100%-25%구간이 그럴 확률) 
그리고, 내가 뽑은 그 세개만 빨간공이고 나머지가 모두 파란공일 확률은 0.0000000024% 이다.

--------------------------------------


위의 데이타를 이해한 사람은 앞으로 내가 주장할 내용이 어느정도 짐작이 갈 것이다.
우리가 어떤 경우를 연속적으로 맞닦뜨린 경우에 
만약, 그 사건이 무작위적으로 일어났고, 똑같은 경향을 보였다면 우리가 흔히 행할 수 있는
'일반화의 오류'는 사실 오류가 아니라 매우 확률적으로 높은 확률의 경향성이라는 것이다.

 

특히, 연속된 세번의 경향성이 가르키는 통계학적 지표는 
그 모집단의 약 85%이상이 그럴 확률이 절반이 되며,
3/4 이상이 그럴 확률은 69%에 다다른다. 
그리고, 그 모집단의 최소 절반이상이 그럴 확률은 94%이다.

 

물론, 위의 계산은 연속된 세번의 사건을 계산한 것이다.
(두개는 빨간공, 한개는 파란공이라면, 또 전혀 다른 결과가 도출 될 것이다.)
하지만, 연속된 세번의 사건이 발생할 경우, 그 모집단이 100, 1000, 10000, 심지어 백만이 되더라도,
이 통계적 확률의 차이는 그리 크지 않다.

 

그리고, 연속된 사건이 네번이 되면 물론 더욱더 높은 확률로 그 모집단의 경향성이 설명된다.

 

1961년에 등장한 후, 많은 이들이 전혀 의심하지 않고,
사용해 왔던 "성급한 일반화의 오류"는 사실 오류가 아니었던 것이다.

-------------------------------------

<추가>

모집단이 작아서 그럴 것이라는 반박이 있어서 모집단을 다르게 했을때 계산값을 추가한다.

아래의 데이타는 세개의 공을 뽑았는데, 그 공이 모두 빨간색이 될 수 있는 확률이

대략 50% 정도의 구간인 8:2의 비율구간의 확률이다. 

 

모집단의 크기       모집단의 비율      모두빨간공이 나올 확률

                              (빨간공:파란공)

10                          8:2                             46.6666667%

100                        80:20                          50.8101422%

1,000                     800:200                      51.1615423%

10,000                   8,000:2,000                 51.1961594%

100,000                 80,000:20,000              51.1996160%

1,000,000              800,000:200,000           51.1999616%

10,000,000            8,000,000:2,000,000      51.1999962%  

100,000,000         80,000,000:20,000,000    51.1999996%

 

모집단이 커질수록 확률은 오히려 미세하게 증가하는 것을 볼 수 있다.

 

               

 

 
 

IP : 45.2.xxx.135
7 개의 댓글이 있습니다.
  • 1. ....
    '23.12.9 2:36 PM (61.75.xxx.185)

    모집단이 1000이니까 저런 확률이
    나오는 거 아닌가요
    모집단의 수는 경우마다 다르잖아요.
    모집단이 커질수록 확률이 더 낮아질 테니
    일반화의 오류가 맞다고 생각합니다.

  • 2. ....
    '23.12.9 2:40 PM (223.39.xxx.147)

    저도 모집단의 종류 어떤 이슈이냐에 따라 원글님 결론이 맞을수도 틀릴수도 있다고 생각해요..연구정신은 높이 사겠음!

  • 3. 일반화
    '23.12.9 2:47 PM (45.2.xxx.135)

    3개가 같은 값일 경우 8:2 비율의 모집단 별 확률
    모집단수 8:2일때 세개가 같을 확률
    100 50.8%
    1000 51.2%
    10000 51.2%
    100000 51.2%
    1000000 51.2%
    10000000 51.2%

  • 4. ...
    '23.12.9 3:02 PM (61.75.xxx.185)

    내가 서울, 부산, 광주에 출장을 가서
    택시를 탔는데
    택시기사가 모두 홍길동을 지지하더라
    이번엔 홍길동이 될 거 같아라고 하면
    모집단이 유권자수가 되어야 하잖아요
    원글님은 모집단이 1000인 경우만
    계산하셨구요

  • 5. ...
    '23.12.9 3:20 PM (61.75.xxx.185)

    와 근데~~
    의문을 갖고 수학적으로 풀어보려고
    하신 거 도전정신과 창의력이 대단하십니다!!
    이런 시도 참신하고 재밌네요~~

  • 6. 일반화
    '23.12.9 3:26 PM (45.2.xxx.135)

    61.75. // 글을 읽지를 않으시는 군요.
    1000 일때 51.2% , 천만일때 51.2% 입니다.
    소수점 한참 아래에서 차이나겠죠.
    모집단 수가 많으면 아주 미세하게 더 높은 확률을 가집니다.

    만약 천만명의 유권자가 A 후보, B 후보를 각각 반반 50:50으로 지지할 경우,
    님이 무작위로 세명을 만났는데, 그 세명이 모두 A후보를 지지할 확률은 12.5%정도 입니다.

  • 7. ...
    '23.12.9 3:55 PM (61.75.xxx.185)

    특히, 연속된 세번의 경향성이 가르키는 통계학적 지표는
    그 모집단의 약 85%가 그럴 확률이 절반이 되며,
    3/4가 그럴 확률은 69%에 다다른다.
    그리고, 그 모집단의 절반이 그럴 확률은 94%이다.


    연속된 3번과 모집단 1000일 때로 계산한 거잖아요
    세번이 아니고 4번이면요?
    모집단이 만이나 100만일 때는요?
    일반화의 오류를 원글님이 계산하고 싶은
    수로 하신 거 아닌가요
    모집단과 연속된 횟수를 바꿔도
    같은 결과가 나올까요?

☞ 로그인 후 의견을 남기실 수 있습니다
댓글입력 작성자 :

N

번호 제목 작성자 날짜 조회
1534030 디즈니 플러스에서 볼 거 추천해 주세요. 12 디즈니 2023/12/09 2,321
1534029 그릇검색하다가 최유라 그릇로드?봤는데 .... 2023/12/09 1,413
1534028 덕수궁근처 사시는 분들 어때요? 5 .. 2023/12/09 3,351
1534027 성심당 질문입니다 9 maybe 2023/12/09 2,695
1534026 배민 비마트가 쿠팡보다 더 빠르네요? 1 ㅇㅇ 2023/12/09 1,476
1534025 서울의봄 반역자들 처벌? 2 ... 2023/12/09 1,414
1534024 기껏 댓글 달았는데 얌체처럼 삭제 4 magok 2023/12/09 997
1534023 복수하면 저에게 영향이 없을 순 없겠죠? 7 ㄴㅇ 2023/12/09 1,805
1534022 요즘 꽃힌 바이올리니스트 네만야 라두로비치 4 @@ 2023/12/09 1,059
1534021 2024년 공휴일 정리 6 ..... 2023/12/09 4,197
1534020 드라마 작가들 제발! 효심이네 4 쫌제발 2023/12/09 4,370
1534019 엄마가 노년에 일하시는게 치매 예방에 도움이 될까요? 15 Dd 2023/12/09 4,891
1534018 수능 끝난 아이랑 넷플릭스 볼만한 것 5 ........ 2023/12/09 2,256
1534017 사탕을 맨날 먹는데 당뇨 걸리겠죠? ㅠ 11 사탕 2023/12/09 4,332
1534016 해외에 살 땐 너무 그립던 한식들.. 24 .. 2023/12/09 7,795
1534015 임대 해지 내용증명 조언 구합니다. 3 ... 2023/12/09 901
1534014 일본이나 제주도 갈때마다 비지니스요 4 2023/12/09 1,615
1534013 아구찜 포장하고 남은거 꼭 냉장보관 해야할까요? 5 아구찜 2023/12/09 2,544
1534012 치매도 결국 당 조절이 중요 11 ㅇㅇ 2023/12/09 6,443
1534011 요리 가끔 해주는 남편이 수풀레에 빠졌어요. 2 2023/12/09 1,956
1534010 adhd약 꾸준히 드시는 분들께 여쭤봅니다 8 .. 2023/12/09 1,833
1534009 남자는 능력이 거의 전부네요 19 you 2023/12/09 9,080
1534008 천수무를 알타리 김치로 담가도 될까요? 10 천수무 2023/12/09 1,506
1534007 따뜻한 차 추천 부탁드려요 26 .... 2023/12/09 2,773
1534006 30대후반 에트로페이즐리 백 어때요? 8 ㅇㅇ 2023/12/09 1,811