82cook.com을 즐겨찾기에 추가
login form

자유게시판

드러낼 수 없는 고민을 풀어보는 속풀이방

중2 수학 방정식과 부등식 문제 풀어주세요

수학 조회수 : 1,570
작성일 : 2012-10-05 20:33:03

개념플러스 유형 (라이트)2-1에 p.131 7-c문제인데요.

-9≤x≤6, 2≤y≤3 에서

-18≤2x≤12,  1/3 ≤ 1/y ≤ 1/2 이므로

-18× 1/2 ≤2x/y≤12× 1/2

  ∴-9≤2x/y≤6

1.  양쪽에 1/3과 1/2 을 곱하는 이유를 설명을 들어도 잘 모르겠다네요, 자세히 풀어서 설명부탁드립니다.

2. 두번째 각각 양쪽에 1/2을 곱하는 이유를 설명을 들었는데도 잘 모르겠답니다, 자세히 풀어서 설명 부탁드립니다.

감사합니다, 꼭 부탁드려요~

IP : 59.8.xxx.176
8 개의 댓글이 있습니다.
  • 1. aka
    '12.10.5 8:56 PM (27.119.xxx.102)

    곱했을겨우 가장 작은값과 큰값이 오게 하려는 것이네 1/2인경우가 만족을 합니다x범위에 음수가 있었으면 상황은 달라지지만 현조건에서는 그렇답니다

  • 2. aka
    '12.10.5 8:59 PM (27.119.xxx.102)

    음수 양수로 수정

  • 3. 지나가다..
    '12.10.5 9:39 PM (211.209.xxx.81)

    부등식의 연산에 관한 내용인데..
    1.에서는 부등식의 연산은 두개 미지수를 덧셈과 곱셈으로 하는 것이 자연스럽습니다. 빼기 나누기는 교차시켜 계산해야 하므로 틀리기 쉽습니다. 그래서 y를 나누지 않고, 역수를 취하여 1/y의 범위를 만들어 2x와 곱하려고 하는 것입니다.

  • 4. 지나가다..
    '12.10.5 9:41 PM (211.209.xxx.81)

    2.에서는 두 미지수의 범위를 곱하여 최대 최소 범위를 구하면 됩니다. 둘다 양수라면 당연히 큰쪽끼리 작은쪽끼리 곱하면 되는데, 문제는 2x의 범위가 음수도 있기에 달라집니다. 양수의 최대는 당연히 큰쪽 곱하기 큰쪽이고, 음수의 최대는 음수의 큰쪽 곱하기 양수의 큰쪽이기 때문에 둘다 1/2을 곱해야 합니다.

  • 5. 수학
    '12.10.5 9:49 PM (59.8.xxx.176)

    감사합니다, (_ _)

  • 6. 빵빵부
    '12.10.8 10:18 AM (211.255.xxx.22)

    -9≤x≤6, 2≤y≤3 에서

    -18≤2x≤12, 1/3 ≤ 1/y ≤ 1/2 이므로

    -18× 1/2 ≤2x/y≤12× 1/2, ∴-9≤2x/y≤6

    1. 양쪽에 1/3과 1/2 을 곱하는 이유를 설명을 들어도 잘 모르겠다네요, 자세히 풀어서 설명부탁드립니다.

    : 부등식에서 역수를 취했을 때의 경우입니다. 여기서는 1/3과 1/2를 곱하는 것으로 생각하지 마시고, 역수를 취했을 때 양쪽이 왜 바뀌는지라고 보는 것이 맞을 것 같습니다.

    방정식은 양변에 똑 같은 수를 더하거나, 빼거나, 곱하거나 0이 아닌수로 나누었을 때도 부호에 관계없이 양변이 같지만, 부등식일 경우에는 음수와 분수를 곱하거나 역수를 취할 경우 부등호의 방향이 변합니다.

    먼저 2≤y≤3 에서, 역수를 취하는 경우 1/2≤1/y≤1/3을 그대로 쓰면 부등식이 성립이 안되죠. 1/2보다 크로 1/3보다 작다는 성립이 안되잖아요. 이 경우 부등호 방향을 바꿔야 합니다. 즉 1/2≥1/y≥1/3이라고 표현되구요, 이것을 다시 작은 것부터 순서대로 정리하다 보니 1/3≤1/y≤1/2로 표현하는거죠.

    결론 : 2≤y≤3에 역수, 1/2≥1/y≥1/3 (부등호 방향이 바뀌고), 1/3≤1/y≤1/2 (순서대로 정리)


    2. 두번째 각각 양쪽에 1/2을 곱하는 이유

    : -18≤2x≤12, 1/3 ≤ 1/y ≤ 1/2 이므로

    -18× 1/2 ≤2x/y≤12× 1/2

    ∴-9≤2x/y≤6

    이것은 두 부등식을 곱한 경우인데요. 원래는 네가지 값이 나옵니다.

    즉, 2x/y를 구하는데 어떻게 구하느냐의 문제구요, 한번 해보죠.
    2x의 값은 -18과 12이고 1/y의 값은 1/3과 1/2입니다. 그럼

    ① (2x의 -18) * (1/y의 1/3) = -18*1/3 = -6
    ② (2x의 -18) * (1/y의 1/2) = -18*1/2 = -9
    ③ (2x의 12) * (1/y의 1/3) = 12*1/3 = 4
    ④ (2x의 12) * (1/y의 1/2) = 12*1/2 = 6

    이중 제일 작은값이 -9, 제일 큰 값이 6이므로 A≤2x/y≤B의 A값이 -9, B의 값이 6이라고 하는겁니다.
    문제의 풀이는 이 중간 과정 없이 그냥 결론이 되는 곱부분만 써준거구요, -18× 1/2 ≤2x/y≤12× 1/2이라구요.
    -18× 1/2가 위 ② (2x의 -18) * (1/y의 1/2) = -18*1/2 = -9 을,
    12× 1/2가 위 ④ (2x의 12) * (1/y의 1/2) = 12*1/2 = 6를 표현한 겁니다.

    그런데 실제 구할 때는 ① (2x의 -18) * (1/y의 1/3) = -18*1/3 = -6, ② (2x의 -18) * (1/y의 1/2) = -18*1/2 = -9, ③ (2x의 12) * (1/y의 1/3) = 12*1/3 = 4, ④ (2x의 12) * (1/y의 1/2) = 12*1/2 = 6를 다 구하고 이중 제일 작은 값과 제일 큰 값을 구하는 과정이 필요합니다.

  • 7. 빵빵부
    '12.10.8 11:04 AM (211.255.xxx.22)

    부등식은

    1. 양변에 똑같은 수를 더해도 부등식은 성립합니다. 단, 이경우 부등호 방향은 변하지 않습니다.

    예) -2≤x≤9에 양변에 3을 더하면, -2+3≤x+3≤9+3, 1≤x≤12, 왜 부등호가 안바뀌냐면 1보다 크고 9보다 작은게 성립이 되니까요.

    2. 양변에 똑같은 수를 빼도 부등식은 성립합니다. 단, 이경우 부등호 방향은 변하지 않습니다.

    예) -2≤x≤9에 양변에 3을 빼면, -2-3≤x-3≤9-3, -5≤x≤6, 왜 부등호가 안바뀌냐면 -5보다 크고 6보다 작은게 성립이 되니까요.

    3. 양변에 똑같은 수를 곱하거나 0이 아닌 수로 나눌 때는 값을 보고 결정하면 됩니다.

    예) 양수를 곱하면 : -2≤x≤9에 양변에 3을 곱하면, -2*3≤x*3≤9*3, -6≤3x≤27, 왜 부등호가 안바뀌냐면 -6보다 크고 27보다 작은게 성립이 되니까요.

    예) 음수를 곱하면 : -2≤x≤9에 양변에 -3을 곱하면, -2*-3≤x*-3≤9*-3, 9≤-3x≤-27, 이 식은 성립이 안되죠. 9보다 크고 -27보다 작은 것이 성립이 안되니까요. 그래서 부호를 바꿔야 합니다. 9≥x≥-27 이렇게요. 이걸 순서대로 정리하면, -27≤x≤9가 됩니다.

    예) 양수를 나누면 : -2≤x≤9에 양변에 3을 나누면, -2/3≤x/3≤9/3, -2/3≤x/3≤3, 왜 부등호가 안바뀌냐면 -2/3보다 크고 3보다 작은게 성립이 되니까요.

    예) 음수를 나누면 : -2≤x≤9에 양변에 -3을 나누면, -2/-3≤x/-3≤9/-3, 2/3≤-x/3≤-3, 이 식은 성립이 안되죠. 2/3보다 크고 -3보다 작은 것이 성립이 안되니까요. 그래서 부호를 바꿔야 합니다. 2/3≥x≥-3 이렇게요. 이걸 순서대로 정리하면, -3≤-x/3≤2/3가 됩니다.

    4. 역수를 취하면, -2≤x≤9를 역수를 취하면 1/-2≤1/x≤1/9이며 -1/2보다 크고 1/9보다 작은 것은 성립이 됩니다. 그래서 이 경우는 이게 답이구요,

    만약 원래 부등식이 2≤x≤9라면, 역수를 취하면 1/2≤1/x≤1/9이며 1/2보다 크고, 1/9보다 작은 것은 성립이 안되므로 부등호 방향을 바꿔야합니다. 1/2≥1/x≥1/9, 순서대로 정리하면 1/9≤1/x≤1/2이 됩니다.


    --- 부등식의 연산시 더하거나 빼거나 고하거나 나누는 경우 부등호 방향이 바뀌는 것은 그 결과가 맞게 하기 위한 것이구요, 고등학교에 올라가서 문자와 식으로 연산이 이루어질 경우에는 이 경우들을 일반화해서 부등호방향을 바꾸어 줍니다.

    예) a≤x≤b일 때 (a,b≤0) 양변에 -3을 곱하면 -3a≥-3x≥-3라고 해주요. 즉 일반화 시키는 경우에 연산시 방향을 바꿔야되느냐 아니냐는 그 결과가 성립이 되느냐 아니냐에 달려 있습니다. 음...좀 이ㅐ가 가셨을지 모르겠네요. 쉽게 풀어쓴다고 했는데 만약에 이해가 안가시면 안가시는 부분을 다시 달아주세요...

  • 8. 빵빵부
    '12.10.8 8:31 PM (211.255.xxx.22)

    마지막 예에서 a≤x≤b일 때 (a,b≤0) 는 a≤x≤b일 때 (a,b≥0)로, -3a≥-3x≥-3은 -3a≥-3x≥-3b로 정정합니다. 잘못 썼네요.

☞ 로그인 후 의견을 남기실 수 있습니다
댓글입력 작성자 :

N

번호 제목 작성자 날짜 조회
162658 밤을 먹으면 가스가차요~ 3 2012/10/08 2,262
162657 결혼하기 참 힘드네요. 5 아를의밤 2012/10/08 2,083
162656 다섯손가락 이해 안가는 부분좀 ? 5 sks 2012/10/08 1,788
162655 노숙인, 호텔리어 된다…서울시-조선호텔 협약 3 샬랄라 2012/10/08 1,781
162654 구미 불산가스 사고 당하신 82 회원님의 글 보셨어요? 7 ㅠㅠ 2012/10/08 3,567
162653 [국감]MB정부 3년간 대기업 법인세 감면, 11조 육박 3 베리떼 2012/10/08 820
162652 엑셀문서 작성할때요. 8 스노피 2012/10/08 1,255
162651 여자 초중고생 양말 뭐 신나요? 양말 2012/10/08 1,123
162650 건조한피부 바디로션추천부탁해요 3 촉촉 2012/10/08 1,682
162649 중3남자아이인데고교진학질문이요. 7 고교진학. 2012/10/08 1,278
162648 제주여행 저렴하게 할수 있는법 아시는분~~ 특히 숙박 3 제주 가요~.. 2012/10/08 1,430
162647 꿰맨 실발 풀수 있는 병원 어딘가요?? 5 에고.. 2012/10/08 1,286
162646 지난주세일했던갈비요리방법문의 코스트코갈비.. 2012/10/08 856
162645 요새 단단한감 맛있나요? 1 ... 2012/10/08 878
162644 정애리 회장엄마가 오늘은 서인혜가 딸 인것을 알게 해 줄까요? 4 드라마 그대.. 2012/10/08 2,680
162643 산부인과 배 초음파로도 자궁근종 확인이 가능한가요? 4 질문 2012/10/08 4,855
162642 구미 드디어 특별재난지역으로 선포되었네요. 8 불산사고 2012/10/08 1,968
162641 답답해서 그러는데..현명한 82님들 도와주세요.. 2 전전긍긍. 2012/10/08 863
162640 안철수의 거짓말 목록~! 29 삐약이 2012/10/08 3,204
162639 가족여행 괌 vs 코카키나발루 vs 발리 8 고민 2012/10/08 3,923
162638 국도 과속 카메라 찍혔을까요?ㅠ 3 걱정 2012/10/08 1,288
162637 중소기업인 88% "경제민주화 논의할 시기 됐다&quo.. 샬랄라 2012/10/08 948
162636 돼지갈비 양념 --배 대신 넣을 수 있는것은? 11 ** 2012/10/08 5,512
162635 담임쌤 수련회 도시락....... 5 반회장엄마 2012/10/08 1,991
162634 신용카드 연회비 질문이요..? 4 연회비 2012/10/08 1,628